

Hydrogen, Ammoniaand Methanolin Hydrogen Hubsin the Nordic Region

NORDIC HYDROGEN VALLEYS

Joakim Lundgren, Project leader H2AMN Professor, Deputy Director, CH2ESS Div. of Energy Science, Luleå University of Technology

-101-

Luleå, January 22, 2025

NTTNU Norwegian University of Science and Technology

UNIVERSITY OF ICELAND

Aim & Objectives of H2AMN

Increase knowledge on hydrogen-based fuel pathways (**hydrogen, ammonia, and methanol**) centered around ports in the Nordic region.

- Assess techno-economic conditions for implementation of H2based fuel pathways
- Assess drivers and barriers for realizing these pathways incl.
 public acceptance, policy gap analysis etc.
- Assess opportunities for innovative sector couplings and energy systems integration
- Assess possibilities in of using existing underground rock caverns for hydrogen and ammonia storage
 - Outline ambitious pathways and strategies/guidelines for the implementation of hydrogen-based value chains in ports in the Nordics by 2030/2040.

Five case studies in two countries

Considered production pathways

Considered production pathways

Large renewable feedstock potentials in Norrbotten

2022	2030	2040
14 TWh (exported "surplus")	15-29 TWh (est. "surplus")	18-48 TWh (est. "surplus")
2,9 million tons bio-CO2	2,9 million tons bio-CO2	2,9 million tons bio-CO2
5-6 TWh	5-6 TWh	5-6 TWh

"Surplus" = Production – Demand (excl. H₂)

Large H2 production potentials

E-methanol to H2

■ Biomethanol to H2

Electrolytic hydrogen

Nordic Energy Research

ydrogen Valleys s Energy Hubs

Large H2 production potentials

Investments of more than 100 billion €

Ref: Wendt M., Wallmark C (Eds). (2022). Hydrogen, energy system and infrastructure in Northern Scandinavia and Finland.

Enough to fulfil the demand?

 Nordic
 Hydrogen Valleys as Energy Hubs

Enough to fulfil the demand?

Electrolytic hydrogen

Nordic Energy Research

Major flows of hydrogen and derivatives 2050 (Mt of H_{2eq})

Note: The boundaries shown and the designations used on this map do not imply official endorsement or acceptance by McKinsey & Company. Source: McKinsey Global Hydrogen Flow Model

Conclusions

- Large production potential of hydrogen and methanol in the region.
 - Biomass based hydrogen is currently overlooked.
- With the predicted hydrogen demand, energy export from the region is unlikely.
- Increased awareness of risks with foreign investments in green molecules production needed.
 - Important to consider in policy making.
 - *PTL in mid-Sweden is a recent example Swedish majority ownership required.*
- In a just transition, energy colonialism must be avoided.

Thanks.

Joakim Lundgren, Project leader H2AMN

Professor, Deputy Director, CH2ESS Div. of Energy Science, Luleå University of Technology

