

Maritime Energy Management: The Journey Towards A Zero/Low Carbon and Energy Efficient Maritime Future

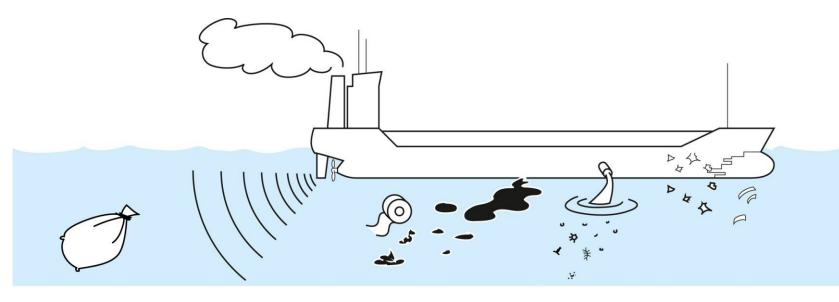
Prof. Dr. Aykut I. Ölçer

Director of Research

Nippon Foundation Professorial Chair in Marine Technology and Innovation

Head, Maritime Energy Management (MEM) Specialization

Prospects for Energy and Maritime Transport in the Nordic Region 26 February 2020


The Least (or Zero) Emission Ship?

(Source: WMU Maritime Energy Management Specialization EGY102 Lecture Notes)

WORLD MARITIME UNIVERSIT

Sustainable Shipping for a Sustainable Planet

Marine litterUnderwaterAirSewageOilInvasive speciesChemicalsAntifouling(solid waste)noiseemissionsspillage(ballast water)

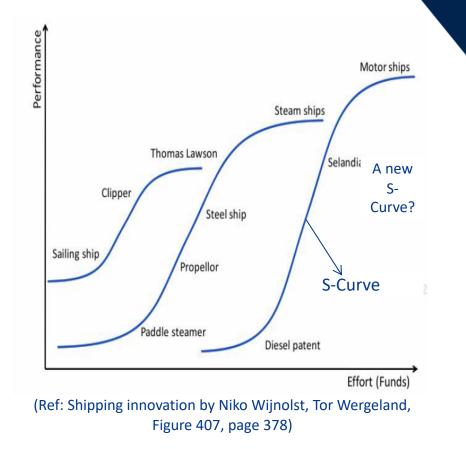
Source: (WMU Maritime Energy Management Specialization EGY102 Lecture Notes)

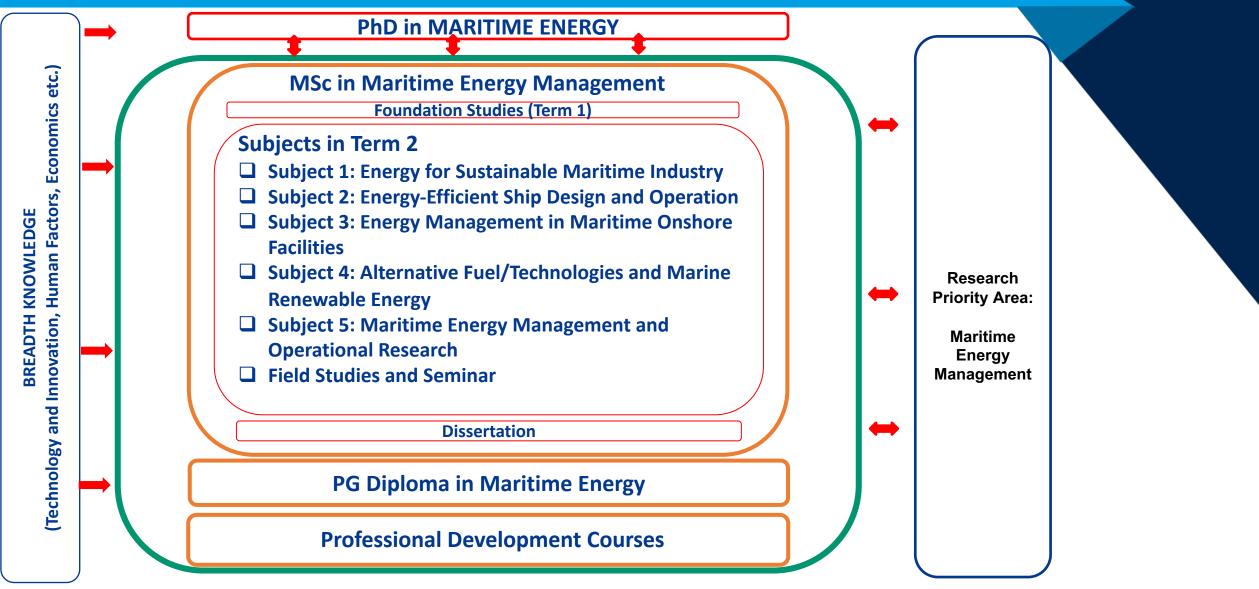
IMO World Maritime Theme for 2020

WORLD MARITIME

Air Pollution - Motivation and Drivers

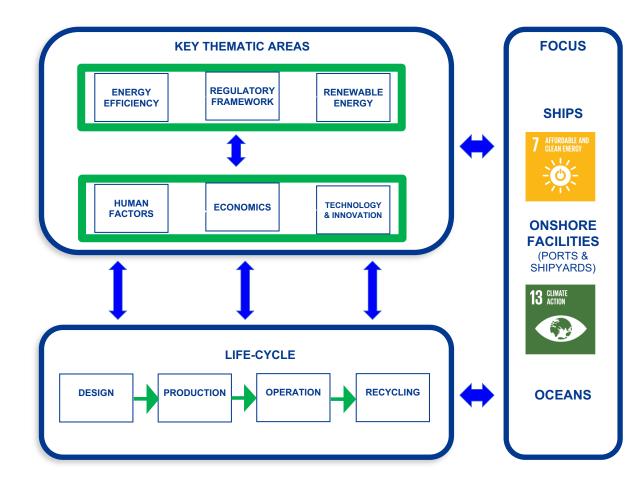
- Environmental impact of Air Pollutants and GHGs (climate change, ..) and other externalities
- More stringent environmental regulations (MARPOL Annex VI Chapter 4), Kyoto to Paris Agreement and the latest IMO GHG Strategy
- □ Volatile fuel oil price
- World population, energy demand and prices
- □ Energy resources scarcity and Energy security


UN2030 Agenda (SDGs 7 & 13 in particular)


Source: (Introduction Chapter, Trends and Challenges in Maritime Energy Management, Ölçer, A.I., Kitada, M., Dalaklis, D., Ballini, F. (Eds.), ISBN 978-3-319-74576-3, Springer)

Future Ship Propulsion Technology

- □ From Human to Diesel Engines
- □ Fuel cells, batteries?
- □ Nuclear (or Thorium?)
- Alternative fuels and Renewables
- □ (Solar, Wind, LNG, biofuel, Methanol, ..)
- Hybrid (right mix?)



The PG Pathway in MEM Stream

The Holistic View of MEM

- Regulatory framework
- Energy efficiency
- Renewable / Cleaner energy
- Technology and innovation
- Human element
- Economics of energy management

Source: Appendix I: Maritime Energy Management Research Strategy, Trends and Challenges in Maritime Energy Management, Ölçer, A.I., Kitada, M., Dalaklis, D., Ballini, F. (Eds.), ISBN 978-3-319-74576-3, Springer

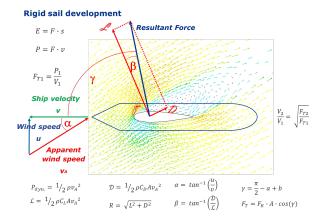
WMU's Research – Two Main Pillars

As the International Maritime Organization's centre of excellence for postgraduate maritime education, WMU's mission is to be the world centre of excellence in postgraduate <u>maritime and oceans</u> education, professional training and <u>research</u>, while building global capacity and promoting sustainable development.

Maritime Research Priority Areas (RPAs)

WMU's Mission: To be the world centre of excellence in postgraduate maritime and oceans education, professional training and research, while building global capacity and promoting sustainable development.

- □ Maritime Energy Management
- □ Maritime and Marine Technology and Innovation
- Maritime Economics and Business
- Maritime Social and Labour Governance
- Maritime Law, Policy and Governance
- □ Maritime Safety
- Environmental Impact of Maritime Activities


Maritime Energy Management (RPA1)

Key topic areas:

- Maritime energy policy and governance
- Economics and social dimensions of energy management
- Energy management over the life-cycle of ships and in maritime onshore facilities (ports, shipyards)
- Renewable energy including ocean energy applicable to the maritime industry
- Marine technology and innovation related to energy
- The circular economy from a waste reduction and renewable energy perspective

Prospects for Energy and Maritime Transport in the Nordic Region WMU, Malmö, Sweden, 26 February 2020

WMU MEM Research Strategy

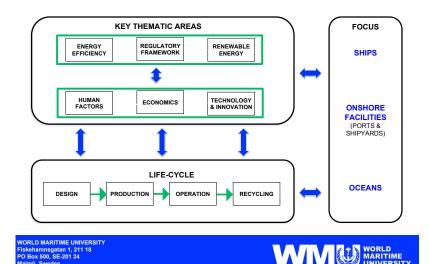
Maritime Energy Management Research Strategy

OUR VISION

To become the world's leading University in the research field of maritime energy management and to play a vital role in transforming the maritime world to achieve a sustainable, low carbon and energy efficient future by delivering research of global excellence.

OUR STRATEGY

This vision will be reflected by MarEner (Maritime Energy Management and Marine Technology) Research Group's interdisciplinary research, whereby WMU will be appreciated for:


Advancing the knowledge in the maritime energy management field by conducting world-class fundamental and applied research in the thematic areas given below over a life-cycle perspective, from shipping to oceans, and from ports to shipyards;

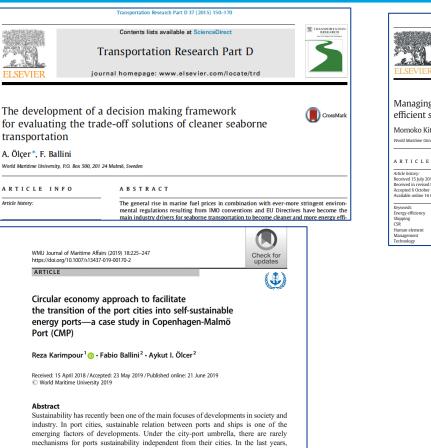
 ${\it Contributing}$ to the capacity building and the goals of the IMO and its Member States and relevant UN bodies, in particular to UN SDGs 7, 12 & 13;

Fostering strategic relationships with other universities, governmental organizations, companies and other maritime stakeholders across the world to advance research;

 $\underline{Setting}$ a global research agenda in the maritime energy management field through addressing maritime community's needs; and

Undertaking research of an international standard through scholarly publication.

Recent Areas of Interest


- Ocean energy
- Renewable energy and alternative fuels and technologies
- Real-time decision support systems for energy efficient ship operations
- Climate change impact on port infrastructure and its adaptation
- Lean, energy efficient and green ports and shipyards
- Life cycle cost/environment impact models of green solutions for ships, ports and shipyards
- Decision making for trade-off situations of cleaner seaborne transportation

Source: Appendix I: Maritime Energy Management Research Strategy, Trends and Challenges in Maritime Energy Management, Ölçer, A.I., Kitada, M., Dalaklis, D., Ballini, F. (Eds.), ISBN 978-3-319-74576-3, Springer

Current Research Portfolio Examples

- ITF Transport 2040 Project: An assessment of the technological developments in the global transport sector and their implications on jobs and employment by 2040, with a budget of 1.2mUSD
- □ EU Horizon 2020 Projects
- Title of EU-H2020 Project WMU Budget Start date CyberMAR (Cyber preparedness actions for a 464,967 EUR 1 September 2019 1 holistic approach and awareness raising in (3 years) the Maritime logistics supply chain) (Strengthening synergies 2 SAFEMODE 252,000 EUR 1 June 2019 between Aviation and maritime in the area (3 years) of human Factors towards achieving more Efficient and resilient MODE of transportation)
- □ EU Regional (Interreg):LNG Value Chain for Clean Shipping, Green Ports and Blue Growth in Baltic Sea Region (Go LNG)
- □ IMO: A research project intended to assess the impact of the human element on international shipping, with a budget of £500,000
- International Association of Maritime Universities (IAMU) and the Nippon Foundation: The work on skills for the future Global Maritime Professional (GMP) resulting in a Global Maritime Professional Body of Knowledge (GMP BoK)

Track Record of the MEM Publications

the increasing negative externalities of the ships, in particular waste and emissions, have been among the priorities of the European ports. To address these issues, solutions like the circular economy in EU port cities has gained significant attention. This paper investigates the application of a waste-to-clean energy model for the Copenhagen-Malmö Port, as a case study. The innovative state-of-art model introduced in this research deals with the feasibility of a closed loop, based on the circular economy, to give added value to a large amount of the waste generated from shipping activities in the Copenhagen-Malmö Port. The proposed model includes key elements such as waste management, biogas plant and cold ironing. Two scenarios are compared, first is the current condition and the second one is assumed with the established circular economy model by the port authority. The scenarios are followed by cost-benefit analyses to show the feasibility of the proposed model.

Keywords Circular economy · Ship-port interaction · Waste management · Biogas plant Cold-ironing

Researc ELSEVIER	Research in Transportation Business & Management 17 (2015) 36-40 Contents lists available at ScienceDirect h in Transportation Business & Management	Marina and Andreas		
Managing people and te efficient shipping	chnology: The challenges in CSR and energy	CrossMark		
Momoko Kitada * , Aykut Ölçer			Ocean Engineering 198 (2020) 106972	
World Maritime University Fiskehamnsgatan 1, Malmi	5 211 18, Sweden		Contents lists available at ScienceDirect	AN
ARTICLE INFO	A B S T R A C T		Ocean Engineering	-
Article history: Received 15 July 2015 Received in revised form 29 September 2015 Accepted 6 October 2015 Available online 16 October 2015	This paper addresses the challenges of managers in the shipping industry to implement er in ship operations and their roles of managers have been and technology under the fulfi social responsibility (CSR), and increasing pressure on shipping companies to concern about including energy efficiency, has led managers to consider CSR as their ethical business pr norm that shipping is generally the most environmentally finedity mode of transport in	Iment of their corporate ut marine environment, actices. It is an accepted	ELSEVIER journal homepage: www.elsevier.com/locate/oceaneng	-
Keywords: Energy efficiency Shipping CSR Human element	per ton nautical mile. Despite an extensive amount of research available to improve energ the implementation of such measures has not been progressed by the industry as expect attributed to human element, which is connected to technology through designing and u is problematic to understand that CSR is an inclusive set of corporate responsibilities in examining human element will help understanding the complexity of management in ea-	y efficiency in shipping, ed. This problem can be sing it. In this context, it 'all-in-one' box. Hence, nergy efficiency in ship-	The development of a ship performance model in varying operating conditions based on ANN and regression techniques	
Management Technology	ping. The paper also identifies the limitations of CSR in business practices and the need search between people and technology in order to respond to managerial challenges in en		Yasser B.A. Farag ^{a,*} , Aykut I. Ölçer ^b	
WN	IU Studies in Maritime Affairs 6		* Ards Academy of Science, Technologe and Martine Transport (AASTAT), Alexandria, Egget * World Martime University (WAU), Malma, Sweden A R T I C L E I N F O A B S T R A C T A R T I C L E I N F O A B S T R A C T Supervise Academy of the shap operational energy efficiency requires robust tools to monitor, estimate, and pro Ship energy efficiency Artificial neural network Multiple regression analysis International infortor (to during) a vyage can be a very important por cancel (Generes that International infortor (Science and Hoff) a vyage can be a very important por cancel (Generes that International infortor).	propriate ions from
Ay Dii	kut I. Ölçer · Momoko Kitada mitrios Dalaklis · Fabio Ballini <i>Editors</i>		Silp performance model required sensitivity to track sea environmental effects on ship performance. Meanwhile, Artficial Silp power prediction Network (AND) as a computing system has proven its applicability in estimating its system soutputs. It Just in Time the ability to capture, learn and adapt to the changes that may occur within the system's variables.	al Neural

Prospects for Energy and Maritime Transport in the Nordic Region WMU, Malmö, Sweden, 26 February 2020

D Springer

Trends and

Challenges

in Maritime

Management

Energy

WMW MARIT

MSc in Maritime Energy Management

Energy and Maritime Industry – Principles and Regulatory Framework To apply system thinking; to define concepts related to energy and provide an appraisal of available energies; to discuss the predominance of fossil fuels; to examine the problems associated with air emissions; to explain local pollution and global climate impacts; to understand the international regulatory and institutional framework for air emissions; to compare energy security for private and public entities; to examine energy management in the shipping context	4 EC	EGY 105	Human Element and Economics of Energy Management To discuss the social and human aspects of modern technology applications in maritime energy and the related IMO and ILO instruments; to analyse barriers to maritime energy management and discuss the roles of stakeholders and potential solutions; to discuss and analyse energy management systems including the cost, financing and economic evaluation; to analyse the demand and supply of energy, electricity markets, and climate change policy; to examine the evaluation of sustainable investment in ports and shipyards	4 EC
Energy-Efficient Ship Design and Operation To understand MARPOL Annex VI including EEDI, SEEMP, MRV, DCS and technology transfer; to examine technological innovation related to energy management in the maritime industry; to explain the basic process of onboard power generation and describe principal energy consumers; to identify energy-saving measures in both ship design and operation; to discuss ship design and energy efficiency through ship resistance reduction means and propulsion efficiency improvement technologies; to discuss ship operation and energy efficiency through operational measures both at ship and fleet levels along with the integration of port/ship duo; to analyse the impact of technical and operational measures on fuel consumption of ships; to discuss machinery technologies including hull and propeller maintenance along with relevant ISO standards	8 EC	EGY 106	Maritime Energy Management and Operational Research To describe operational research (OR) techniques relevant to maritime energy management (MEM), in particular simulation, optimization and decision-making; to discuss the relation between MEM and operational research through mathematical modelling; to apply relevant OR techniques through OR software such as multi-criteria decision making, monte carlo simulation, externality modeling and speed optimization in ship design and ship/port operations; to analyse valuing of strategic investments and decisions through financial risk simulation; and to analyse the results of OR applications within the MEM context Leadership in the Fourth Industrial Revolution	4 EC
Energy Management in Maritime Onshore Facilities To discuss energy management in terms of its vision, planning and strategy in the context of ports/ shipyards; to provide an overview of the ISO 50001 energy management system certification process and ISO 14001 environmental management systems; to explain energy auditing through real applications from ports/shipyards; to discuss the socio-economic benefits associated with abatement technologies adopted in response to international, European and regional port emissions regulations;	8 EC	EGT 113	To examine technological innovation related to energy management in the maritime industry; to understand the impact of the fourth industrial revolution within the MEM context including autonomous ships, internet of things, cyber-physical systems, maritime digitalisation, big data and artificial intelligence; to understand science-policy-industry interface and the principle of science-based decision-making for future maritime energy leaders; to analyse the country needs and develop a practical plan of action for their country or region to achieve the UN's sustainable development goals	400
to analyse the externalities in ports/shipyards; to apply the Circular Economy and industrial symbiosis approach within port/shipyard; to analyse the impact of climate change on port infrastructure and to discuss its adaptation		FST 101	Field Studies To provide a range of field study opportunities to demonstrate the application of the theory taught in the specialization subjects. Students travel to major maritime destinations that offer valuable insights	4 EC
Alternative Fuels/Technologies and Marine Benewable Energy	8 EC		into organizational practices and networking opportunities with professionals around the world	

Alternative Fuels/Technologies and Marine Renewable Energy EGY 112

EGY 111

EGY 102

EGY 108

To describe emission limits and technological options globally and within Emission Control Areas (ECAs); to examine emission abatement technologies and alternative fuels including LNG, LPG, biofuels, hydrogen and methanol; to discuss alternative future technologies including fuel cells and batteries; to demonstrate a systematic understanding of the application of life-cycle analysis on fuel cell concept; to discuss renewable energy for electricity generation and marine renewable energy including offshore wind and ocean energy (wave, ocean and tidal currents and tidal range, OTEC and salinity gradient) along with their environmental and social impacts including underwater noise; to examine solar and wind power applications onboard ships as well as in maritime onshore facilities

8 EC

WMU 424 Seminar on Maritime Transport Policy and Maritime Communications

To give students an opportunity to exchange ideas with each other and with maritime experts through presentations, debates and discussions. The seminars cover development of maritime transport policy as well as contemporary issues in information and communication technology

Yaser Farag, Egypt

"WMU is the only place where you have a holistic view of the very specialized field of Maritime Affairs."

MSc in Maritime Affairs, specializing in Maritime **Energy Management**

2 EC

PG Diploma in Maritime Energy (via DL)

WORLD MARITIME UNIVERSITY

POSTGRADUATE DIPLOMA IN MARITIME ENERGY BY DISTANCE LEARNING

Module 1	Maritime Energy and Sustainable Development
Module 2	Ships and Energy Efficiency
Module 3	Future Propulsion Technologies
Module 4	Energy Conservation in Ports and Shipyards
Module 5	Best Practices and Life- Cycle Perspectives

WORLD MARITIME UNIVERSIT

MTCC Seminar at WMU – October 2019

Title at IMO Website: EU/IMO global project drives energy efficiency in the maritime sector

Prospects for Energy and Maritime Transport in the Nordic Region WMU, Malmö, Sweden, 26 February 2020 WORLD MARITIME

The Way Forward ?

- □ The Paradigm Shift?
- □ Mindset Change?
- Right Combination of thematic pillars
- Right combination of EE measures
- Collaboration amongst all stakeholders

© ZERO EMISSION SHIP ©

Thank You For Your Attention

Stewards of the Sea

THANK YOU FOR YOUR ATTENTION

Aykut I. Ölçer aio@wmu.se

